Welcome to our tutorial on super-resolution CodeFormer for images and videos, In this step-by-step guide,
You’ll learn how to improve and enhance images and videos using super resolution models. We will also add a bonus feature of coloring a B&W images
What You’ll Learn:
The tutorial is divided into four parts:
Part 1: Setting up the Environment.
Part 2: Image Super-Resolution
Part 3: Video Super-Resolution
Part 4: Bonus – Colorizing Old and Gray Images
Check out our tutorial here : https://www.youtube.com/watch?v=sjhZjsvfN_o
You can find more tutorials, and join my newsletter here : https://eranfeit.net/blog
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Part 1 : Super Resolution Installation
# Create a Conda enviroment conda create --name Codeformer3 python=3.11 conda activate Codeformer3 # Clone the CodeFormer git clone https://github.com/sczhou/CodeFormer.git cd CodeFormer # install Pytorch 2.5.0 # # Find your cuda version : ( I am using Cuda 12.4) nvcc --version # Look for the command of Pytorch for your Cuda version . # for Cuda 12.4 : conda install pytorch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 pytorch-cuda=12.4 -c pytorch -c nvidia
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Part 2 : More Python libraries Installations
pip install addict==2.4.0 pip install future==1.0.0 pip install lmdb==1.6.2 pip install opencv-python==4.11.0.86 pip install requests==2.32.3 pip install scikit-image==0.25.2 pip install tb-nightly==2.20.0a20250602 pip install tqdm==4.67.1 pip install yapf==0.43.0 pip install lpips==0.1.4
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Part 3: Install CodeFormer
python basicsr/setup.py develop
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Part 4 : Install dlib
conda install -c conda-forge dlib
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Part 5 : Download pre-trained models
python scripts/download_pretrained_models.py facelib python scripts/download_pretrained_models.py dlib python scripts/download_pretrained_models.py CodeFormer
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
part 6: Update the Python script
copy the file “crop_align_face2.py” to scripts folder
""" brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) author: lzhbrian (https://lzhbrian.me) link: https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5 date: 2020.1.5 note: code is heavily borrowed from https://github.com/NVlabs/ffhq-dataset http://dlib.net/face_landmark_detection.py.html requirements: conda install Pillow numpy scipy conda install -c conda-forge dlib # download face landmark model from: # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 """ import os import glob import numpy as np import PIL import PIL.Image import scipy import scipy.ndimage import argparse from basicsr.utils.download_util import load_file_from_url try: import dlib except ImportError: print('Please install dlib by running:' 'conda install -c conda-forge dlib') # download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 shape_predictor_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/shape_predictor_68_face_landmarks-fbdc2cb8.dat' ckpt_path = load_file_from_url(url=shape_predictor_url, model_dir='weights/dlib', progress=True, file_name=None) predictor = dlib.shape_predictor('weights/dlib/shape_predictor_68_face_landmarks-fbdc2cb8.dat') def get_landmark(filepath, only_keep_largest=True): """get landmark with dlib :return: np.array shape=(68, 2) """ detector = dlib.get_frontal_face_detector() img = dlib.load_rgb_image(filepath) dets = detector(img, 1) # Shangchen modified print("\tNumber of faces detected: {}".format(len(dets))) if only_keep_largest: print('\tOnly keep the largest.') face_areas = [] for k, d in enumerate(dets): face_area = (d.right() - d.left()) * (d.bottom() - d.top()) face_areas.append(face_area) largest_idx = face_areas.index(max(face_areas)) d = dets[largest_idx] shape = predictor(img, d) # print("Part 0: {}, Part 1: {} ...".format( # shape.part(0), shape.part(1))) else: for k, d in enumerate(dets): # print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( # k, d.left(), d.top(), d.right(), d.bottom())) # Get the landmarks/parts for the face in box d. shape = predictor(img, d) # print("Part 0: {}, Part 1: {} ...".format( # shape.part(0), shape.part(1))) t = list(shape.parts()) a = [] for tt in t: a.append([tt.x, tt.y]) lm = np.array(a) # lm is a shape=(68,2) np.array return lm def align_face(filepath, out_path): """ :param filepath: str :return: PIL Image """ try: lm = get_landmark(filepath) except: print('No landmark ...') return lm_chin = lm[0:17] # left-right lm_eyebrow_left = lm[17:22] # left-right lm_eyebrow_right = lm[22:27] # left-right lm_nose = lm[27:31] # top-down lm_nostrils = lm[31:36] # top-down lm_eye_left = lm[36:42] # left-clockwise lm_eye_right = lm[42:48] # left-clockwise lm_mouth_outer = lm[48:60] # left-clockwise lm_mouth_inner = lm[60:68] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Choose oriented crop rectangle. x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) qsize = np.hypot(*x) * 2 # read image img = PIL.Image.open(filepath) output_size = 512 transform_size = 4096 enable_padding = False # Shrink. shrink = int(np.floor(qsize / output_size * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, PIL.Image.ANTIALIAS) quad /= shrink qsize /= shrink # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: img = img.crop(crop) quad -= crop[0:2] # Pad. pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad( np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum( 1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) blur = qsize * 0.02 img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) img = PIL.Image.fromarray( np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') quad += pad[:2] img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) # Save aligned image. # print('saveing: ', out_path) img.save(out_path) return img, np.max(quad[:, 0]) - np.min(quad[:, 0]) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--in_dir', type=str, default='./inputs/whole_imgs') parser.add_argument('-o', '--out_dir', type=str, default='./inputs/cropped_faces') args = parser.parse_args() if args.out_dir.endswith('/'): # solve when path ends with / args.out_dir = args.out_dir[:-1] dir_name = os.path.abspath(args.out_dir) os.makedirs(dir_name, exist_ok=True) img_list = sorted(glob.glob(os.path.join(args.in_dir, '*.[jpJP][pnPN]*[gG]'))) test_img_num = len(img_list) for i, in_path in enumerate(img_list): img_name = os.path.basename(in_path) print(f'[{i+1}/{test_img_num}] Processing: {img_name}') out_path = os.path.join(args.out_dir, img_name) out_path = out_path.replace('.jpg', '.png') size_ = align_face(in_path, out_path)
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Part 7 : Your test images
These are my test images
You can download the images here : https://ko-fi.com/s/0cbc853606
Part 8 : Crop the face images
Use this command :
python scripts/crop_align_face2.py -i [input folder] -o [output folder]
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Here is a sample command :
python scripts/crop_align_face2.py -i inputs/whole_imgs -o inputs/cropped_faces
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Result :
[1/9] Processing: 00.jpg Number of faces detected: 4 Only keep the largest. [2/9] Processing: 01.jpg Number of faces detected: 4 Only keep the largest. [3/9] Processing: 02.png Number of faces detected: 4 Only keep the largest. [4/9] Processing: 03.jpg Number of faces detected: 1 Only keep the largest. [5/9] Processing: 04.jpg Number of faces detected: 1 Only keep the largest. [6/9] Processing: 05.jpg Number of faces detected: 1 Only keep the largest. [7/9] Processing: 06.png Number of faces detected: 2 Only keep the largest. [8/9] Processing: 2017-11-03 12.39.38.jpg Number of faces detected: 2 Only keep the largest. [9/9] Processing: low_res_image.jpg Number of faces detected: 1 Only keep the largest.
Part 9: 🧑🏻 Face Restoration (cropped and aligned face)
# For cropped and aligned faces (512x512) python inference_codeformer.py -w 0.5 --has_aligned --input_path [image folder]|[image path] 🖼️ Whole Image Enhancement # For whole image # Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN # Add '--face_upsample' to further upsample restorated face with Real-ESRGAN # Add -w --fidelity_weight # sample : python inference_codeformer.py -w 0.7 --input_path inputs/whole_imgs # run this command for upscale images : ##################################### python inference_codeformer.py --input_path inputs/whole_imgs --output_path results -w 0.7 --bg_upsampler realesrgan --face_upsample
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Here is the amazing result :
Part 10 : 🎬 Video Enhancement
You can download the retro video from here : https://ko-fi.com/s/0cbc853606
# please install ffmpeg first : conda install -c conda-forge ffmpeg pip install ffmpeg # Copy the Startrek.avi to a new subfolder named "video" into the "codeformer" main folder # Video file should end with '.mp4'|'.mov'|'.avi' python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path] # sample command python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path video/Startrek.avi
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Part 11: 🌈 Face Colorization (cropped and aligned face)
3 steps : #step 1 :crop your gray image copy your image to whole_imgs folder # run the crop command : !!!! python scripts/crop_align_face.py -i [input folder] -o [output folder] python scripts/crop_align_face.py -i inputs/whole_imgs # it will generate a faces images in the "inputs/cropped" Option 2 : If you run with no paramters the whole_imgs folder will be the input and the cropped folder will be the output python scripts/crop_align_face.py # step 2 : copy the face gray image to "inputs\gray_faces" folder # Step 3 : run the color process For cropped and aligned faces (512x512) # Colorize black and white or faded photo python inference_colorization.py --input_path [image folder]|[image path] # if it is in the defalut gray folder , You can run : python inference_colorization.py Now , go to "results\gray_faces" folder and you can find your color image
You can download the Instructions steps for this video here : https://ko-fi.com/s/0cbc853606
Connect :
☕ Buy me a coffee — https://ko-fi.com/eranfeit
🖥️ Email : feitgemel@gmail.com
🤝 Fiverr : https://www.fiverr.com/s/mB3Pbb
Enjoy,
Eran